Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
3.
Clin Sci (Lond) ; 135(24): 2781-2791, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1599254

ABSTRACT

Low plasma levels of the signaling lipid metabolite sphingosine 1-phosphate (S1P) are associated with disrupted endothelial cell (EC) barriers, lymphopenia and reduced responsivity to hypoxia. Total S1P levels were also reduced in 23 critically ill patients with coronavirus disease 2019 (COVID-19), and the two main S1P carriers, serum albumin (SA) and high-density lipoprotein (HDL) were dramatically low. Surprisingly, we observed a carrier-changing shift from SA to HDL, which probably prevented an even further drop in S1P levels. Furthermore, intracellular S1P levels in red blood cells (RBCs) were significantly increased in COVID-19 patients compared with healthy controls due to up-regulation of S1P producing sphingosine kinase 1 and down-regulation of S1P degrading lyase expression. Cell culture experiments supported increased sphingosine kinase activity and unchanged S1P release from RBC stores of COVID-19 patients. These observations suggest adaptive mechanisms for maintenance of the vasculature and immunity as well as prevention of tissue hypoxia in COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Erythrocytes/metabolism , Lysophospholipids/blood , Sphingosine/analogs & derivatives , Aged , Cells, Cultured , Humans , Lipoproteins, HDL/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , SARS-CoV-2 , Serum Albumin/metabolism , Sphingosine/blood
4.
Front Immunol ; 12: 753849, 2021.
Article in English | MEDLINE | ID: covidwho-1523705

ABSTRACT

Background: CD14+ monocytes present antigens to adaptive immune cells via monocytic human leukocyte antigen receptor (mHLA-DR), which is described as an immunological synapse. Reduced levels of mHLA-DR can display an acquired immune defect, which is often found in sepsis and predisposes for secondary infections and fatal outcomes. Monocytic HLA-DR expression is reliably induced by interferon- γ (IFNγ) therapy. Case Report: We report a case of multidrug-resistant superinfected COVID-19 acute respiratory distress syndrome (ARDS) on extracorporeal membrane oxygenation (ECMO) support. The resistance profiles of the detected Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii and Citrobacter freundii isolates were equipped with resistance to all four antibiotic classes including carbapenems (4MRGN) and Cefiderocol in the case of K. pneumoniae. A causal therapeutic antibiotic strategy was not available. Therefore, we measured the immune status of the patient aiming to identify a potential acquired immune deficiency. Monocyte HLA-DR expression identified by FACS analysis revealed an expression level of 34% positive monocytes and suggested severe immunosuppression. We indicated IFNγ therapy, which resulted in a rapid increase in mHLA-DR expression (96%), rapid resolution of invasive bloodstream infection, and discharge from the hospital on day 70. Discussion: Superinfection is a dangerous complication of COVID-19 pneumonia, and sepsis-induced immunosuppression is a risk factor for it. Immunosuppression is expressed by a disturbed antigen presentation of monocytes to cells of the adaptive immune system. The case presented here is remarkable as no validated antibiotic regimen existed against the detected bacterial pathogens causing bloodstream infection and severe pneumonia in a patient suffering from COVID-19 ARDS. Possible restoration of the patient's own immunity by IFNγ was a plausible option to boost the patient's immune system, eliminate the identified 4MRGNs, and allow for lung recovery. This led to the conclusion that immune status monitoring is useful in complicated COVID-19-ARDS and that concomitant IFNγ therapy may support antibiotic strategies. Conclusion: After a compromised immune system has been detected by suppressed mHLA-DR levels, the immune system can be safely reactivated by IFNγ.


Subject(s)
Bacteria/immunology , COVID-19/immunology , Drug Resistance, Multiple/immunology , HLA Antigens/immunology , Interferon-gamma/immunology , Monocytes/immunology , Respiratory Distress Syndrome/immunology , Adult , Humans , Receptors, Interferon/immunology
5.
Front Med (Lausanne) ; 8: 644715, 2021.
Article in English | MEDLINE | ID: covidwho-1266665

ABSTRACT

Background: Acute kidney injury (AKI) is very common in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease 2019 (COVID-19) and considered as a risk factor for COVID-19 severity. SARS-CoV-2 renal tropism has been observed in COVID-19 patients, suggesting that direct viral injury of the kidneys may contribute to AKI. We examined 20 adult cases with confirmed SARS-CoV-2 infection requiring ICU supportive care in a single-center prospective observational study and investigated whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Objectives: The objective of the study was to evaluate whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Results: Urinary SARS-CoV-2 N measured at ICU admission identified patients at risk for AKI in COVID-19 (HR 5.9, 95% CI 1.4-26, p = 0.0095). In addition, the combination of urinary SARS-CoV-2 N and plasma albumin measurements further improved the association with AKI (HR 11.4, 95% CI 2.7-48, p = 0.0016). Finally, combining urinary SARS-CoV-2 N and plasma albumin measurements associated with the length of ICU supportive care (HR 3.3, 95% CI 1.1-9.9, p = 0.0273) and premature death (HR 7.6, 95% CI 1.3-44, p = 0.0240). In contrast, urinary ACE2 and TMPRSS2 did not correlate with AKI in COVID-19. Conclusions: In conclusion, urinary SARS-CoV-2 N levels associate with risk for AKI and correlate with COVID-19 severity.

6.
Front Immunol ; 12: 645124, 2021.
Article in English | MEDLINE | ID: covidwho-1201169

ABSTRACT

Background: The major histocompatibility complex (MHC) class II characterized by monocytes CD14+ expression of human leukocyte antigen receptors (HLA-DR), is essential for the synapse between innate and adaptive immune response in infectious disease. Its reduced expression is associated with a high risk of secondary infections in septic patients and can be safely corrected by Interferon-y (IFNy) injection. Coronavirus disease (COVID-19) induces an alteration of Interferon (IFN) genes expression potentially responsible for the observed low HLA-DR expression in circulating monocytes (mHLA-DR). Methods: We report a case of one-time INFy injection (100 mcg s.c.) in a superinfected 61-year-old man with COVID-19-associated acute respiratory distress syndrome (ARDS), with monitoring of mHLA-DR expression and clinical tolerance. Observations: Low mHLA-DR pretreatment expression (26.7%) was observed. IFNy therapy leading to a rapid increase in mHLA-DR expression (83.1%). Conclusions: Severe ARDS in a COVID-19 patient has a deep reduction in mHLA-DR expression concomitantly with secondary infections. The unique IFNy injection was safe and led to a sharp increase in the expression of mHLA-DR. Based on immune and infection monitoring, more cases of severe COVID-19 patients with low mHLA-DR should be treated by IFNy to test the clinical effectiveness.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 Drug Treatment , COVID-19 , HLA-DR Antigens/immunology , Interferon-gamma/administration & dosage , Monocytes/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Acquired Immunodeficiency Syndrome/drug therapy , Acquired Immunodeficiency Syndrome/immunology , Acquired Immunodeficiency Syndrome/pathology , COVID-19/immunology , COVID-19/pathology , Humans , Male , Middle Aged , Monocytes/pathology
7.
Cell Rep ; 35(3): 109017, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1163486

ABSTRACT

Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to farmed mink has been observed in Europe and the US. In the infected animals, viral variants arose that harbored mutations in the spike (S) protein, the target of neutralizing antibodies, and these variants were transmitted back to humans. This raised concerns that mink might become a constant source of human infection with SARS-CoV-2 variants associated with an increased threat to human health and resulted in mass culling of mink. Here, we report that mutations frequently found in the S proteins of SARS-CoV-2 from mink are mostly compatible with efficient entry into human cells and its inhibition by soluble angiotensin-converting enzyme 2 (ACE2). In contrast, mutation Y453F reduces neutralization by an antibody with emergency use authorization for coronavirus disease 2019 (COVID-19) therapy and sera/plasma from COVID-19 patients. These results suggest that antibody responses induced upon infection or certain antibodies used for treatment might offer insufficient protection against SARS-CoV-2 variants from mink.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Mink , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , A549 Cells , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/immunology , Chlorocebus aethiops , Cricetinae , Humans , Mink/immunology , Mink/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
8.
Crit Care Explor ; 2(11): e0284, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-939585

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 cell entry depends on angiotensin-converting enzyme 2 and transmembrane serine protease 2 and is blocked in cell culture by camostat mesylate, a clinically proven protease inhibitor. Whether camostat mesylate is able to lower disease burden in coronavirus disease 2019 sepsis is currently unknown. DESIGN: Retrospective observational case series. SETTING: Patient treated in ICU of University hospital Göttingen, Germany. PATIENTS: Eleven critical ill coronavirus disease 2019 patients with organ failure were treated in ICU. INTERVENTIONS: Compassionate use of camostat mesylate (six patients, camostat group) or hydroxychloroquine (five patients, hydroxychloroquine group). MEASUREMENTS AND MAIN RESULTS: Clinical courses were assessed by Sepsis-related Organ Failure Assessment score at days 1, 3, and 8. Further, viral load, oxygenation, and inflammatory markers were determined. Sepsis-related Organ Failure Assessment score was comparable between camostat and hydroxychloroquine groups upon ICU admission. During observation, the Sepsis-related Organ Failure Assessment score decreased in the camostat group but remained elevated in the hydroxychloroquine group. The decline in disease severity in camostat mesylate treated patients was paralleled by a decline in inflammatory markers and improvement of oxygenation. CONCLUSIONS: The severity of coronavirus disease 2019 decreased upon camostat mesylate treatment within a period of 8 days and a similar effect was not observed in patients receiving hydroxychloroquine. Camostat mesylate thus warrants further evaluation within randomized clinical trials.

9.
Science ; 370(6518): 856-860, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-883299

ABSTRACT

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Neuropilin-1/metabolism , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Betacoronavirus/genetics , COVID-19 , Caco-2 Cells , Female , HEK293 Cells , Host Microbial Interactions , Humans , Lung/metabolism , Male , Metal Nanoparticles , Mice , Mice, Inbred C57BL , Mutation , Neuropilin-1/chemistry , Neuropilin-1/genetics , Neuropilin-1/immunology , Neuropilin-2/metabolism , Olfactory Mucosa/metabolism , Olfactory Mucosa/virology , Pandemics , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Domains , Respiratory Mucosa/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL